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The free and forced vibrations of a system of two rectangular membranes
attached together by a Winkler elastic layer are studied analytically. The motion
of the system is described by two non-homogeneous partial differential equations.
The solutions of the free vibrations are obtained by the Bernoulli–Fourier method.
Solving the boundary value problem the natural frequencies and the mode shape
functions are found. The initial-value problem is also solved. The free vibrations
of the double-membrane system are realised by synchronous and asynchronous
deflections. The forced vibrations of membranes subjected to arbitrarily
distributed continuous loads are determined by using the classical method of the
expansion in a series of the normal modes of vibrations. Discussing the vibrations
caused by the harmonic exciting forces it is shown that the dynamic absorption
phenomenon appears. Therefore, the double-membrane system can be used as a
dynamic vibration absorber. As a numerical example the vibrations of the system
consisting of two identical membranes subjected to harmonic uniform distributed
load are treated in detail.
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1. INTRODUCTION

The vibration analysis of a compound continuous systems with elastic constraints
is of great theoretical and practical importance and has a wide application in
aeronautics, cosmonautics, civil and mechanical engineering [1].

The compound continuous system considered consists of one-dimensional
(string, ring, beam) or two-dimensional (membrane, plate) solids which are
coupled by elastic layers. The simplest fundamental model of such a system is
composed of two solids joined by a Winkler elastic layer (the elastically connected
double-solid system).

In 1964 the transverse vibrations of an elastically connected double-beam system
were considered by Seelig and Hoppmann II [2, 3]. This system has also been
analyzed by Kessel [4], Kessel and Raske [5], Saito and Chonan [6, 7], Rao [8],
Oniszczuk [9–15], Chonan [16, 17], Hamada et al. [18, 19], Yankelevsky [20],
Kukla and Skalmierski [21]. The vibration problem concerning a similar
double-string system has been solved by Oniszczuk [22]. The in-plane free
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vibrations of an elastically connected concentric two-ring systems have been
investigated by Stead et al. [23], Kirkhope [24], Kunukkasseril and Reddy [25], and
Rao [26, 27]. The transverse vibrations of circular and rectangular double-mem-
brane systems have been discussed by Oniszczuk [28–31]. The very important and
difficult problem of the transverse vibrations of rectangular and circular plates
joined by an elastic layer has been studied by Kunukkasseril and Radhakrishnan
[32], Kunukkasseril and Swamidas [33, 34], Chonan [35, 36], and Oniszczuk
[37, 38].

In this paper the transverse vibrations of two rectangular membranes connected
by a Winkler elastic layer are considered and the complete analytical solutions of
free and forced vibrations are presented.

2. FORMULATION OF THE PROBLEM

The mechanical model of the vibrating system under consideration is composed
of two parallel rectangular membranes connected by a massless, linear, elastic
layer of Winkler type (see Figure 1). It is assumed that the membranes are thin,
homogeneous and perfectly elastic and they have constant thickness. The
membranes are uniformly tight by suitable constant tensions applied at the
boundaries. The membranes are subjected to arbitrarily distributed continuous
loads. The small vibrations of the system with no damping are considered.

The governing differential equations of the transverse vibrations of a
double-membrane system have the following form [28–31]:

m1ẅ1 −N1Dw1 + k(w1 −w2)= f1, m2ẅ2 −N2Dw2 + k(w2 −w1)= f2, (1)

where wi =wi (x, y, t) is the transverse membrane displacement; fi = fi (x, y, t) is
the exciting distributed load; x, y, t are the space co-ordinates and the time; k is
the stiffness modulus of a Winkler elastic layer; a, b, hi are the membrane

Figure 1. The physical model of an elastically connected rectangular double-membrane compound
system.
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dimensions; ri is the mass density; Ni is the uniform constant tension per unit
length;

mi = rihi , ẇi =
1wi

1t
, Dwi =

12wi

1x2 +
12wi

1y2 , i=1, 2.

The boundary and initial conditions may be written as follows

wi (0, y, t)=wi (a, y, t)=wi (x, 0, t)=wi (x, b, t)=0, (2)

wi (x, y, 0)=wi0(x, y), ẇi =(x,y,0) = vi0(x, y), i=1, 2. (3)

3. FREE VIBRATIONS

The free vibrations of an elastically connected double-membrane system are
described by two homogeneous differential equations:

m1ẅ1 −N1Dw1 + k(w1 −w2)=0, m2ẅ2 −N2Dw2 + k(w2 −w1)=0. (4)

Using the Bernoulli–Fourier method (separation of variables) the general solutions
of equations (4) are taken in the form:

wi (x, y, t)=Wi (x, y)T(t), i=1, 2, (5)

T(t)=C sin (vt)+D cos (vt), (6)

where v is the natural frequency of the system. Substituting solutions (5) into
equations (4) results in the following equations:

N1DW1 + (m1v
2 − k)W1 + kW2 =0, N2DW2 + (m2v

2 − k)W2 + kW1 =0. (7)

Now by eliminating the function W2 one gets the equation

D2W1 + [(m1v
2 − k)N−1

1 + (m2v
2 − k)N−1

2 ]DW1

+v2(N1N2)−1[m1m2v
2 − k(m1 +m2)]W1 =0

or

(D+ k2
1 )(D+ k2

2 )W1 =0, (8)

where

k2
1,2 =0·5{[(m1v

2 − k)N−1
1 + (m2v

2 − k)N−1
2 ]2 ([(m1v

2 − k)N−1
1

+(m2v
2 − k)N−1

2 ]2 −4v2(N1N2)−1[m1m2v
2 − k(m1 +m2)])1/2}. (9)

The coefficients k2
1 and k2

2 are both positive when

v2 qv2
0 = k(m−1

1 +m−1
2 ). (10)

The harmonic type of free vibrations is assured by the condition (10). The solution
of equation (8) has the form

W1(x, y)=X(x)Y(y). (11)
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Substituting the expression (11) into an equation of type (8)

(D+ k2
i )W1 =0, i=1, 2, (12)

gives the relation

X0Y+XY0+ k2
i XY=0, (13)

where

X'=
dX
dx

, Y'=
dY
dy

.

Separating of the variables in equation (13) gives two independent ordinary
differential equations

X0+ a2
i X=0, Y0+ b2

i Y=0, (14)

where

k2
i = a2

i + b2
i , i=1, 2. (15)

Solving the equations (14) yields the expressions [28]

Xi (x)=A1i sin (aix)+A2i cos (aix), Yi (y)=B1i sin (biy)+B2i cos (biy). (16)

Then the general mode shape function W1 is found to be

W1(x, y)= s
2

i=1

W1i (x, y)= s
2

i=1

Xi (x)Yi (y)

= s
2

i=1

[A1i sin (aix)+A2i cos (aix)][B1i sin (biy)+B2i cos (biy)]. (17)

Using the first equation of the system (7) one can now determine the general mode
shape function W2 in the following form:

W2(x, y)= s
2

i=1

W2i (x, y)= s
2

i=1

ciW1i (x, y)= s
2

i=1

ciXi (x)Yi (y)

= s
2

i=1

[A1i sin (aix)+A2i cos (aix)][B1i sin (biy)+B2i cos (biy)]ci , (18)

where

ci =(N1k2
i + k−m1v

2)k−1 = k(N2k2
i + k−m2v

2)−1, i=1, 2, (19)

c1,2 =0·5k−1N1{[(m2v
2 − k)N−1

2 − (m1v
2 − k)N−1

1 ]2 ([(m2v
2 − k)N−1

2

−(m1v
2 − k)N−1

1 ]2 +4k2(N1N2)−1)1/2}, c1 q 0, c2 Q 0.
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The unknown constants A1i , A2i , B1i , B2i are found by solving the boundary value
problem. Substituting the shape functions W1 and W2 into the boundary
conditions (2) gives a set of eight homogeneous equations for the unknown
constants. Solving it shows that B1i =B2i =0 and the following characteristic
equations are received

sin (aia)=0, sin (bib)=0, i=1, 2. (20)

From these equations the unknown coefficients ai , bi and ki can be calculated

ai = aim = am =mpa−1, bi = bin = bn = npb−1, i=1, 2, (21)

k2
i = k2

imn = k2
mn = a2

m + b2
n = p2[(a−1m)2 + (b−1n)2], m, n=1, 2, 3, . . . (22)

Transforming properly the expression (9) gives the following frequency equation
[28]:

v4 − [(N1k2
mn + k)m−1

1 + (N2k2
mn + k)m−1

2 ]v2

+ k2
mn (m1m2)−1[N1N2k2

mn + k(N1 +N2)]=0. (23)

The natural frequencies of the double-membrane system are determined from
the formula:

v2
1,2mn =0·5{[(N1k2

mn + k)m−1
1 + (N2k2

mn + k)m−1
2 ]3 ([(N1k2

mn + k)m−1
1

+(N2k2
mn + k)m−1

2 ]2 −4k2
mn (m1m2)−1[N1N2k2

mn + k(N1 +N2)])1/2},

v1mn Qv2mn . (24)

One can now formulate the time functions (6) and the mode shapes of free
vibrations (17), (18) corresponding to the natural frequencies vimn

Timn (t)=Cimn sin (vimnt)+Dimn cos (vimnt), (25)

W1imn (x, y)=Wmn (x, y)=Xm (x)Yn (y)= sin (amx) sin (bny),

W2imn (x, y)= cimnWmn (x, y)= cimnXm (x)Yn (y)= cimn sin (amx) sin (bny), (26)

where

cimn =(N1k2
mn + k−m1v

2
imn )k−1 = k(N2k2

mn + k−m2v
2
imn )−1, (27)

c1,2mn =0·5k−1m1{[(N1k2
mn + k)m−1

1 − (N2k2
mn + k)m−1

2 ]

2([(N1k2
mn + k)m−1

1 − (N2k2
mn + k)m−1

2 ]2 +4k2(m1m2)−1)1/2},

Wmn (x, y)= sin (amx) sin (bny), Xm (x)= sin (amx), Yn (y)= sin (bny),

c1mn q 0, c2mn Q 0, c1mnc2mn =−m1m−1
2 , i=1, 2, m, n=1, 2, 3, . . .
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Finally the general solutions of the free vibrations of an elastically connected
double-membrane system under consideration may be written in the following
form:

w1(x, y, t)= s
(i,m,n)

W1imn (x, y)Timn (t)= s
a

m,n=1

Wmn (x, y) s
2

i=1

Timn (t)

= s
a

m,n=1

sin (amx) sin (bny) s
2

i=1

[Cimn sin (vimnt)+Dimn cos (vimnt)],

w2(x, y, t)= s
(i,m,n)

W2imn (x, y)Timn (t)= s
a

m,n=1

Wmn (x, y) s
2

i=1

cimnTimn (t)

= s
a

m,n=1

sin (amx) sin (bny) s
2

i=1

[Cimn sin (vimnt)+Dimn cos (vimnt)]cimn .

(29)

The free vibrations of membranes are realised in the form of synchronous
(c1mn q 0, v1mn ) and asynchronous (c2mn Q 0, v2mn ) displacements. The solution of
the initial-value problem requires the knowing of the orthogonality condition of
normal modes of vibrations. This condition is built using the equations (7)
rewritten in the following form:

N1DW1imn +(m1v
2
imn − k)W1imn + kW2imn =0,

N2DW2imn +(m2v
2
imn − k)W2imn + kW1imn =0.

With the expressions (26) and (27) we can transform the above in the equation
as for a single membrane

DWmn + k2
mnWmn =0. (30)

Then the orthogonality condition of mode shape functions has the known classical
form:

g
a

0 g
b

0

WklWmn dx dy=g
a

0

sin (akx) sin (amx) dx g
b

0

sin (bly) sin (bny) dy

=60,
a2

mn ,
k$m or l$ n,
k=m and l= n,

(31)

where

a2
mn =g

a

0 g
b

0

W2
mn dx dy=g

a

0

sin2 (amx) dx g
b

0

sin2 (bny) dy=0·25ab.
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Substituting the solutions (29) into the initial conditions (3) gives the relations

w10 = s
(m,n)

Wmn s
2

i=1

Dimn , v10 = s
(m,n)

Wmn s
2

i=1

vimnCimn ,

w20 = s
(m,n)

Wmn s
2

i=1

cimnDimn , v20 = s
(m,n)

Wmn s
2

i=1

cimnvimnCimn .

Multiplying these relations by the eigenfunction Wkl then integrating them over
the membrane surface and using the orthogonality condition (31) produces

g
a

0 g
b

0

w10Wmn dx dy= a2
mn s

2

i=1

Dimn , g
a

0 g
b

0

v10Wmn dx dy= a2
mn s

2

i=1

vimnCimn ,

g
a

0 g
b

0

w20Wmn dx dy= a2
mn s

2

i=1

cimnDimn ,

g
a

0 g
b

0

v20Wmn dx dy= a2
mn s

2

i=1

cimnvimnCimn ,

from where one can obtain the following formulas making it possible to calculate
the unknown constants:

C1mn =(v1mnz1mn )−1 g
a

0 g
b

0

(c2mnv10 − v20) sin (amx) sin (bny) dx dy,

C2mn =(v2mnz2mn )−1 g
a

0 g
b

0

(c1mnv10 − v20) sin (amx) sin (bny) dx dy,

D1mn = z−1
1mn g

a

0 g
b

0

(c2mnw10 −w20) sin (amx) sin (bny) dx dy,

D2mn = z−1
2mn g

a

0 g
b

0

(c1mnw10 −w20) sin (amx) sin (bny) dx dy, (32)

where

z1mn =−z2mn = a2
mn (c2mn − c1mn )=0·25ab(c2mn − c1mn ).

4. FORCED VIBRATIONS

The forced vibrations of two membranes subjected to arbitrarily distributed
continuous loads are determined by using the classical method of the expansion
in a series of the normal modes of vibrations.
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The particular solutions of non-homogeneous differential equations (1)
representing the forced vibrations of double-membrane system are assumed in the
form:

w1(x, y, t)= s
(i,m,n)

W1imn (x, y)Simn (t)= s
a

m,n=1

Wmn (x, y) s
2

i=1

Simn (t),

w2(x, y, t)= s
(i,m,n)

W2imn (x, y)Simn (t)= s
a

m,n=1

Wmn (x, y) s
2

i=1

cimnSimn (t), (33)

where Simn (t) are the unknown time functions corresponding to the natural
frequencies vimn . Substituting the solutions (33) into the governing equations (1)
gives

s
(m,n) 6Wmn s

2

i=1

[m1S� imn + k(1− cimn )Simn ]−N1DWmn s
2

i=1

Simn7= f1,

s
(m,n) 6Wmn s

2

i=1

cimn [m2S� imn + k(1− c−1
imn )Simn ]−N2DWmn s

2

i=1

cimnSimn7= f2.

Taking equations (27) and (30) into consideration gives

m1 s
(m,n)

Wmn s
2

i=1

(S� 1mn +v2
imnSimn )= f1,

m2 s
(m,n)

Wmn s
2

i=1

(S� imn +v2
imnSimn )cimn = f2.

Multiplying both sides of the above equations by the eigenfunction Wkl then
integrating over the membrane surface and using the orthogonality condition (31)
gives a set of equations from which the differential equations for unknown time
functions are found

S� imn +v2
imnSimn =Kimn (t), i=1, 2, (34)

where

K1mn (t)= z−1
1mn g

a

0 g
b

0

(c2mnm−1
1 f1 −m−1

2 f2)Wmn dx dy,

K2mn (t)= z−1
2mn g

a

0 g
b

0

(c1mnm−1
1 f1 −m−1

2 f2)Wmn dx dy,

z1mn =−z2mn =0·25ab(c2mn − c1mn ).
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Their solutions satisfying the zero initial conditions are as follows

Simn (t)=v−1
imn g

t

0

Kimn (s) sin [vimn (t− s)] ds, i=1, 2. (35)

Finally the expressions describing the forced vibrations of an elastically connected
double-membrane system have the following form:

w1(x, y, t)= s
a

m,n=1

sin (amx) sin (bny) s
2

i=1

v−1
imn g

t

0

Kimn (s) sin [vimn (t− s)] ds,

w2(x, y, t)= s
a

m,n=1

sin (amx) sin (bny) s
2

i=1

cimnv
−1
imn g

t

0

Kimn (s) sin [vimn (t− s)] ds.

(36)

As an example the interesting particular case of load is now considered. The
calculation is carried out for harmonic distributed load applied only to the first
membrane

f1(x, y, t)= f(x, y) sin (pt), f2(x, y, t)=0,

where p is the forcing frequency.
The steady state forced vibrations of membranes are obtained in the following

form:

w1(x, y, t)= sin (pt) s
a

m,n=1

A1mn sin (amx) sin (bny),

w2(x, y, t)= sin (pt) s
a

m,n=1

A2mn sin (amx) sin (bny), (37)

where

A1mn =4FmnM−1
1 (v2

22mn − p2)[(v2
1mn − p2)(v2

2mn − p2)]−1,

A2mn =4FmnK−1v4
12[(v2

1mn − p2)(v2
2mn − p2)]−1, (38)

Fmn =g
a

0 g
b

0

f(x, y) sin (amx) sin (bny) dx dy, K= abk,

Mi = abmi = abhiri , i=1, 2, v4
12 = k2(m1m2)−1 =K2(M1M2)−1,

v2
22mn =(N2k2

mn + k)m−1
2 = (abN2k2

mn +K)M−1
2 .

The analysis of amplitudes (38) leads to the following conditions:
(a) condition of resonance

p=vimn , i=1, 2, m, n=1, 2, 3, . . . ,
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Figure 2. An elastically connected double-membrane system subjected to harmonic uniform
distributed load.

(b) condition of dynamic vibration absorption

A1mn =0, A2mn =−4FmnK−1,

p2 = p2
mn =v2

22mn =(abN2k2
mn +K)M−1

2 .

It is proved that the second membrane acts like a dynamic vibration absorber in
relation to the first one (main body). Suitable choice of elastic layer stiffness
modulus (k), tension force (N2) and second membrane mass (M2) causes the
appearance of dynamic absorption phenomenon. The dynamic absorption
eliminates any selected harmonic component of first membrane vibrations. In the
compound continuous system the dynamic absorber reduces the forced vibrations
of the main body but never liquidates them absolutely [1]. The dynamic absorption
phenomenon is of great practical importance.

5. NUMERICAL EXAMPLE

The system of two identical rectangular membranes are considered. The first
membrane is subjected to harmonic uniform load which is distributed
continuously on its whole surface (see Figure 2):

f1(x, y, t)= f sin (pt), f2(x, y, t)=0.

The following values of the parameters are used in the numerical calculations:

a=1 m, b=2 m, h= hi =1×10−3 m, i=1, 2, k=2×102 N m−3,

M=mi = rh=2×10−2 kg m−2, N=Ni =50 N m−1, r= ri =20 kg m−3.

The initial conditions are assumed as follows:

w10(x, y)=w0 sin (a−1px) sin (b−1py), w20 = v10 = v20 =0.
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The general solutions of free vibrations (29) have the form:

w1(x, y, t)= s
a

m,n=1

sin (amx) sin (bny) s
2

i=1

[Cimn sin (vimnt)+Dimn cos (vimnt)],

w2(x, y, t)= s
a

m,n=1

sin (amx) sin (bny) s
2

i=1

[Cimn sin (vimnt)+Dimn cos (vimnt)]cimn ,

where the natural frequencies and the mode shape coefficients are received from
the expressions (21), (22), (24) and (27)

am = a−1mp, bn = b−1np, k2
mn = p2[(a−1m)2 + (b−1n)2], c1mn =−c2mn =1,

v2
1mn =M−1Nk2

mn , v2
2mn =v2

1mn +v2
0 , v2

0 =2kM−1, m, n=1, 2, 3, . . .
The results of the calculations of the natural frequencies are presented in
Table 1. The mode shapes of vibrations corresponding to the first four pairs of
the natural frequencies are shown in Figure 3. The natural mode shapes of
vibrations are described by the expressions

W1imn =Wmn , W2imn = cimnWmn , Wmn =sin (mpx) sin (0·5npy),

c1mn =−c2mn =1, i=1, 2.

The double-membrane system executes two kinds of vibrations: in-phase
(synchronous) vibrations (c1mn q 0) with lower frequencies v1mn (v1mn Qv2mn ) and
out-of-phase (asynchronous) vibrations (c2mn Q 0) with higher frequencies v2mn .
The deflection form of membrane surface is identical for any pair of natural
frequencies vimn . The synchronous vibrations are performed by both membranes
with equal amplitudes (c1mn =1) then the elastic layer is not deformed on the

T 1

Natural frequencies of double-membrane system vimn (s−1)

1 2 3 4 5 6n
v1m1 v1m2 v1m3 v1m4 v1m5 v1m6

m
vimn

v2m1 v2m2 v2m3 v2m4 v2m5 v2m6

1 v11n 175·6 222·1 283·2 351·2 422·9 496·7
v21n 225·5 263·3 316·5 378·6 446·0 516·5

2 v12n 323·8 351·2 392·7 444·3 502·9 566·4
v22n 353·4 378·6 417·4 466·3 522·4 583·8

3 v13n 477·7 496·7 526·9 566·4 613·4 666·4
v23n 498·2 516·5 545·5 583·8 629·5 681·3

4 v14n 633·2 647·7 671·0 702·5 740·9 785·4
v24n 648·8 662·9 685·8 716·6 754·3 798·0

5 v15n 789·2 800·9 820·0 845·9 878·1 915·9
v25n 801·9 813·3 832·1 857·6 889·4 926·8

6 v16n 945·7 955·5 971·5 993·5 1021·0 1053·7
v26n 956·3 965·9 981·7 1003·5 1030·8 1063·2
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Figure 3. The mode shapes of vibrations of a rectangular double-membrane system corresponding
to the first four pairs of the natural frequencies.

transverse direction. In this case the double-membrane system oscillates as a single
membrane with the same natural frequencies. The natural frequencies of the
asynchronous vibrations are identical as for the single membrane vibrating on the
elastic layer of stiffness modulus 2k.

Solving the initial-value problem the free vibrations of membranes are found
in the final form

w1(x, y, t)=0·5w0 sin (px) sin (0·5py)[cos (v111t)+ cos (v211t)],

w2(x, y, t)=0·5w0 sin (px) sin (0·5py)[cos (v111t)− cos (v211t)].
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Figure 4. The resonance curves of a rectangular double-membrane system subjected to harmonic
uniform distributed load.

The assumed initial conditions cause the membrane vibrations with the first pair
frequencies v111 and v211. The membranes execute the synchronous vibrations with
lower frequency v111 =175·6(s−1) (and the equal amplitudes) and asynchronous
vibrations with higher frequency v211 =225·5(s−1) (see Figure 3).

The steady-state forced vibrations of the membrane system are determined from
the expressions (38) and (39) for the case of harmonic uniform distributed load

w1(x, y, t)= sin (pt) s
(m,n)

A1mn sin (amx) sin (bny),

w2(x, y, t)= sin (pt) s
(m,n)

A2mn sin (amx) sin (bny),

where

A1mn =8fM−1(mnp2)−1(v2
1mn +v2

2mn −2p2)[(v2
1mn − p2)(v2

2mn − p2)]−1,

A2mn =8fM−1(mnp2)−1v2
0 [(v2

1mn − p2)(v2
2mn − p2)]−1, m, n=1, 3, 5, . . .

The forced vibrations are expressed only by the symmetric mode shapes because
of the symmetry of the applied load. The first three resonance curves of the forced
vibrations of the double-membrane system are presented in Figure 4. The full lines
111, 113, 115 describe the amplitudes of synchronous vibration components A111,
A113, A115 and the broken lines 211, 213, 215 represent the amplitudes of
asynchronous vibration components A211, A213, A215. The quantities p11, p13, p15 are
the exciting frequencies at which the dynamic vibration absorption occurs. These
frequencies are calculated from the condition

p2 = p2
mn =v2

22mn =(Nk2
mn + k)M−1 =0·5(v2

1mn +v2
2mn ),
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which leads to the following membrane amplitudes:

A1mn =0, A2mn =−32fM−1(mnp2v2
0 )−1 =−16fk−1(mnp2)−1,

m, n=1, 3, 5, . . .

6. CONCLUSIONS

This work deals with the transverse vibrations of an elastically connected
rectangular double-membrane system. The free vibrations are determined by using
the Bernoulli–Fourier method. It is shown that the membranes perform both
synchronous and asynchronous motions. The forced vibrations caused by
arbitrarily distributed continuous loads are found by the method of the expansion
in a series of the mode shape functions. In the case of action of the harmonic forces,
dynamic vibration absorption occurs and the double-membrane system can be used
as a dynamic vibration absorber. This phenomenon is of great practical importance.
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